Search results
Results From The WOW.Com Content Network
In sports biomechanics, dynamical systems theory has emerged in the movement sciences as a viable framework for modeling athletic performance and efficiency. It comes as no surprise, since dynamical systems theory has its roots in Analytical mechanics. From psychophysiological perspective, the human movement system is a highly intricate network ...
A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.
Systems theory is manifest in the work of practitioners in many disciplines, for example the works of physician Alexander Bogdanov, biologist Ludwig von Bertalanffy, linguist Béla H. Bánáthy, and sociologist Talcott Parsons; in the study of ecological systems by Howard T. Odum, Eugene Odum; in Fritjof Capra's study of organizational theory; in the study of management by Peter Senge; in ...
Complex dynamic systems theory in the field of linguistics is a perspective and approach to the study of second, third and additional language acquisition. The general term complex dynamic systems theory was recommended by Kees de Bot to refer to both complexity theory and dynamic systems theory .
Deterministic system (mathematics) Linear system; Partial differential equation; Dynamical systems and chaos theory; Chaos theory. Chaos argument; Butterfly effect; 0-1 test for chaos; Bifurcation diagram; Feigenbaum constant; Sharkovskii's theorem; Attractor. Strange nonchaotic attractor; Stability theory. Mechanical equilibrium; Astable ...
System dynamics is an aspect of systems theory as a method to understand the dynamic behavior of complex systems. The basis of the method is the recognition that the structure of any system, the many circular, interlocking, sometimes time-delayed relationships among its components, is often just as important in determining its behavior as the ...
A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system. A period-doubling cascade is an infinite sequence of period-doubling bifurcations. Such cascades are one route by which dynamical systems can develop chaos. [1] In hydrodynamics, they are one of the possible routes to ...
A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.