Search results
Results From The WOW.Com Content Network
As with fractions of the form , it has been conjectured that every fraction (for >) can be expressed as a sum of three positive unit fractions. A generalized version of the conjecture states that, for any positive k {\displaystyle k} , all but finitely many fractions k n {\displaystyle {\tfrac {k}{n}}} can be expressed as a sum of three ...
are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator. This step is called clearing fractions.
By mental calculation, it is easier to multiply 16 by 3 ⁄ 16 than to do the same calculation using the fraction's decimal equivalent (0.1875). And it is more precise (exact, in fact) to multiply 15 by 1 ⁄ 3, for example, than it is to multiply 15 by any decimal
Four bags with three marbles per bag gives twelve marbles (4 × 3 = 12). Multiplication can also be thought of as scaling. Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit.
First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.
Trachtenberg defined this algorithm with a kind of pairwise multiplication where two digits are multiplied by one digit, essentially only keeping the middle digit of the result. By performing the above algorithm with this pairwise multiplication, even fewer temporary results need to be held. Example: