Ads
related to: solving compound inequalities notes
Search results
Results From The WOW.Com Content Network
Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–Erdős inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality
When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4 x < 2 x + 1 ≤ 3 x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction.
Note that, unlike the standard rearrangement inequality , this statement requires the numbers to be nonnegative. A similar statement is true for any number of sequences with all numbers nonnegative. A similar statement is true for any number of sequences with all numbers nonnegative.
Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...
The sign of the square root needs to be chosen properly—note that if 2 π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ.
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
Supposing , we have that + + +. Define = (,,) and = (+, +, +). By the rearrangement inequality, the dot product of the two sequences is maximized when the terms are arranged to be both increasing or both decreasing.
Note that the convex mapping Y(X) increasingly "stretches" the distribution for increasing values of X. This is a proof without words of Jensen's inequality for n variables. Without loss of generality, the sum of the positive weights is 1. It follows that the weighted point lies in the convex hull of the original points, which lies above the ...