Search results
Results From The WOW.Com Content Network
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
Space vector modulation (SVM) is an algorithm for the control of pulse-width modulation (PWM), invented by Gerhard Pfaff, Alois Weschta, and Albert Wick in 1982. [1] [2] It is used for the creation of alternating current (AC) waveforms; most commonly to drive 3 phase AC powered motors at varying speeds from DC using multiple class-D amplifiers.
A training example of SVM with kernel given by φ((a, b)) = (a, b, a 2 + b 2) Suppose now that we would like to learn a nonlinear classification rule which corresponds to a linear classification rule for the transformed data points φ ( x i ) . {\displaystyle \varphi (\mathbf {x} _{i}).}
For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.
Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels. As an example, a sample instance might be a natural language sentence, and the output label is an annotated parse tree. Training a classifier consists of ...
In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]