Search results
Results From The WOW.Com Content Network
Std enthalpy change of vaporization, ... for Ethyl Acetate/Water [3] P = 760 mmHg BP Temp. °C % by mole C 4 H 8 O 2; liquid vapor 100.0: 0.0: 0.0
Under normal conditions, ethyl acetate exists as a colorless, low-viscosity, and flammable liquid. Its melting point is −83 °C, with a melting enthalpy of 10.48 kJ/mol. At atmospheric pressure, the compound boils at 77 °C. The vaporization enthalpy at the boiling point is 31.94 kJ/mol. The vapor pressure function follows the Antoine equation
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
English: Heat of evaporation of ethyl acetate - temperature dependence. ... (V. Majer, V. Svoboda: Enthalpies of Vaporization of Organic Compounds: ...
For example, acetic acid and ethanol gives ethyl acetate and water. CH 3 COO−H + HO−CH 2 CH 3 → CH 3 COO−CH 2 CH 3 + H 2 O. Most acetate esters, however, are produced from acetaldehyde using the Tishchenko reaction. In addition, ether acetates are used as solvents for nitrocellulose, acrylic lacquers, varnish removers, and wood stains.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process.
The integral heat of dissolution is defined as a process of obtaining a certain amount of solution with a final concentration. The enthalpy change in this process, normalized by the mole number of solute, is evaluated as the molar integral heat of dissolution. Mathematically, the molar integral heat of dissolution is denoted as: