Search results
Results From The WOW.Com Content Network
Some common non-elementary antiderivative functions are given names, defining so-called special functions, and formulas involving these new functions can express a larger class of non-elementary antiderivatives. The examples above name the corresponding special functions in parentheses.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Nonelementary integral – Integrals not expressible in closed-form from elementary functions; Risch algorithm – Method for evaluating indefinite integrals; Tarski's high school algebra problem – Mathematical problem; Transcendental function – Analytic function that does not satisfy a polynomial equation
Integral calculus is the study of the definitions, properties, and applications of two related concepts, the indefinite integral and the definite integral. The process of finding the value of an integral is called integration. [47]: 508 The indefinite integral, also known as the antiderivative, is the inverse operation to the derivative.
In this case, the improper definite integral can be determined in several ways: the Laplace transform, double integration, differentiating under the integral sign, contour integration, and the Dirichlet kernel. But since the integrand is an even function, the domain of integration can be extended to the negative real number line as well.
Many special functions appear as solutions of differential equations or integrals of elementary functions.Therefore, tables of integrals [1] usually include descriptions of special functions, and tables of special functions [2] include most important integrals; at least, the integral representation of special functions.
Integrands of the form (d + e x) m (a + b x + c x 2) p when b 2 − 4 a c = 0 [ edit ] The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
There are many alternatives to the classical calculus of Newton and Leibniz; for example, each of the infinitely many non-Newtonian calculi. [1] Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea.