When.com Web Search

  1. Ads

    related to: delta x and y calculator calculus problems worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    On a locally compact Hausdorff space X, the Dirac delta measure concentrated at a point x is the Radon measure associated with the Daniell integral on compactly supported continuous functions φ. [34] At this level of generality, calculus as such is no longer possible, however a variety of techniques from abstract analysis are available.

  3. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an infinitely small or infinitely slow change is, intuitively, extremely useful, and there are a number of ways to make the notion mathematically ...

  4. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    One thinks of δF/δρ as the gradient of F at the point ρ, so the value δF/δρ(x) measures how much the functional F will change if the function ρ is changed at the point x. Hence the formula ∫ δ F δ ρ ( x ) ϕ ( x ) d x {\displaystyle \int {\frac {\delta F}{\delta \rho }}(x)\phi (x)\;dx} is regarded as the directional derivative at ...

  5. Increment theorem - Wikipedia

    en.wikipedia.org/wiki/Increment_theorem

    Again assume that y = f(x) is differentiable, but now let Δx be a nonzero standard real number. Then the same equation Δ y = f ′ ( x ) Δ x + ε Δ x {\displaystyle \Delta y=f'(x)\,\Delta x+\varepsilon \,\Delta x} holds with the same definition of Δ y , but instead of ε being infinitesimal, we have lim Δ x → 0 ε = 0 {\displaystyle ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  7. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    Gottfried Wilhelm von Leibniz (1646–1716), German philosopher, mathematician, and namesake of this widely used mathematical notation in calculus.. In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively ...

  8. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete calculus is used for modeling either directly or indirectly as a discretization of infinitesimal calculus in every branch of the physical sciences, actuarial science, computer science, statistics, engineering, economics, business, medicine, demography, and in other fields wherever a problem can be mathematically modeled. It allows one ...

  9. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    The multiple integral is a definite integral of a function of more than one real variable, for example, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in R 2 are called double integrals, and integrals of a function of three variables over a region of R 3 are called triple integrals. [33]