Search results
Results From The WOW.Com Content Network
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
Modern geodesy tends to retain the ellipsoid of revolution as a reference ellipsoid and treat triaxiality and pear shape as a part of the geoid figure: they are represented by the spherical harmonic coefficients , and , respectively, corresponding to degree and order numbers 2.2 for the triaxiality and 3.0 for the pear shape.
Geodesy, also called Bomford's Geodesy, [1] is a textbook on geodesy written by Guy Bomford. Four editions were published, [ 2 ] in 1952, 1962, 1971, and 1980 respectively. [ a ] Bomford retired in 1966, though continued publishing editions of the book.
While the mean Earth ellipsoid is the ideal basis of global geodesy, for regional networks a so-called reference ellipsoid may be the better choice. [1] When geodetic measurements have to be computed on a mathematical reference surface, this surface should have a similar curvature as the regional geoid; otherwise, reduction of the measurements ...
Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
The main goals of satellite geodesy are: Determination of the figure of the Earth, positioning, and navigation (geometric satellite geodesy) [1]: 3 Determination of geoid, Earth's gravity field and its temporal variations (dynamical satellite geodesy [2] or satellite physical geodesy)
In Riemannian geometry, the geodesic curvature of a curve measures how far the curve is from being a geodesic. For example, for 1D curves on a 2D surface embedded in 3D space , it is the curvature of the curve projected onto the surface's tangent plane.