Search results
Results From The WOW.Com Content Network
Optical activity is reciprocal, i.e. it is the same for opposite directions of wave propagation through an optically active medium, for example, clockwise polarization rotation from the point of view of an observer. In case of optically active isotropic media, the rotation is the same for any direction of wave propagation.
Recording optical rotation with a polarimeter: The plane of polarisation of plane polarised light (4) rotates (6) as it passes through an optically active sample (5). This angle is determined with a rotatable polarizing filter (7). In chemistry, specific rotation ([α]) is a property of a chiral chemical compound.
A meso compound or meso isomer is an optically inactive isomer in a set of stereoisomers, at least two of which are optically active. [1] [2] This means that despite containing two or more stereocenters, the molecule is not chiral. A meso compound is superposable on its mirror image (not to be confused with superimposable, as any two objects ...
Therefore, those compounds are called optically active and their property is referred to as optical rotation. Light sources such as a light bulb, Tungsten Halogen, or the sun emit electromagnetic waves at the frequency of visible light. Their electric field oscillates in all possible planes relative to their direction of propagation.
It is an important tool in the production of optically active compounds, including drugs. [3] Another term with the same meaning is optical resolution. The use of chiral resolution to obtain enantiomerically pure compounds has the disadvantage of necessarily discarding at least half of the starting racemic mixture.
There are three common naming conventions for specifying one of the two enantiomers (the absolute configuration) of a given chiral molecule: the R/S system is based on the geometry of the molecule; the (+)- and (−)- system (also written using the obsolete equivalents d- and l-) is based on its optical rotation properties; and the D/L system is based on the molecule's relationship to ...
In chemistry, racemization is a conversion, by heat or by chemical reaction, of an optically active compound into a racemic (optically inactive) form. This creates a 1:1 molar ratio of enantiomers and is referred to as a racemic mixture (i.e. contain equal amount of (+) and (−) forms).
He said that all optically active carbon compounds have an asymmetric carbon atom. [12] In the same year, Joseph Achille Le Bel only used asymmetry arguments and talked about the asymmetry of the molecules as a whole instead of the asymmetry of each carbon atom. [13]