Search results
Results From The WOW.Com Content Network
Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes ...
It can also happen during mitotic division, [1] which may result in loss of heterozygosity. Crossing over is important for the normal segregation of chromosomes during meiosis. [ 2 ] Crossing over also accounts for genetic variation, because due to the swapping of genetic material during crossing over, the chromatids held together by the ...
A pair of sister chromatids is called a dyad. A full set of sister chromatids is created during the synthesis phase of interphase, when all the chromosomes in a cell are replicated. The two sister chromatids are separated from each other into two different cells during mitosis or during the second division of meiosis.
The proteins encoded by these genes all function in the chromosome cohesion pathway that is employed in the cohesion of sister chromatids during mitosis, DNA repair, chromosome segregation and the regulation of developmental gene expression. Defects in these functions likely underlie many of the features of Cornelia de Lang Syndrome.
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
DNA replication also works by using a DNA template, the DNA double helix unwinds during replication, exposing unpaired bases for new nucleotides to hydrogen bond to. Gene synthesis, however, does not require a DNA template and genes are assembled de novo. DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The ...
DNA is read by DNA polymerase in the 3′ to 5′ direction, meaning the new strand is synthesized in the 5' to 3' direction. Since the leading and lagging strand templates are oriented in opposite directions at the replication fork, a major issue is how to achieve synthesis of new lagging strand DNA, whose direction of synthesis is opposite to ...
The G1/S cell cycle checkpoint controls the passage of eukaryotic cells from the first gap phase, G1, into the DNA synthesis phase, S. In this switch in mammalian cells, there are two cell cycle kinases that help to control the checkpoint: cell cycle kinases CDK4/6-cyclin D and CDK2-cyclin E. [ 1 ] The transcription complex that includes Rb and ...