Search results
Results From The WOW.Com Content Network
The assumption that if there is a counterexample, there is a minimal counterexample, is based on a well-ordering of some kind. The usual ordering on the natural numbers is clearly possible, by the most usual formulation of mathematical induction ; but the scope of the method can include well-ordered induction of any kind.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
This page lists notable examples of incomplete or incorrect published mathematical proofs. Most of these were accepted as complete or correct for several years but later discovered to contain gaps or errors. There are both examples where a complete proof was later found, or where the alleged result turned out to be false.
Definitional retreat – changing the meaning of a word when an objection is raised. [23] Often paired with moving the goalposts (see below), as when an argument is challenged using a common definition of a term in the argument, and the arguer presents a different definition of the term and thereby demands different evidence to debunk the argument.
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
In the context of limits, this is shorthand meaning for sufficiently large arguments; the relevant argument(s) are implicit in the context. As an example, the function log(log(x)) eventually becomes larger than 100"; in this context, "eventually" means "for sufficiently large x." factor through
For premium support please call: 800-290-4726 more ways to reach us
Since assuming P to be false leads to a contradiction, it is concluded that P is in fact true. An important special case is the existence proof by contradiction: in order to demonstrate that an object with a given property exists, we derive a contradiction from the assumption that all objects satisfy the negation of the property.