Search results
Results From The WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
One common convention is to associate intersection = {: ()} with logical conjunction (and) and associate union = {: ()} with logical disjunction (or), and then transfer the precedence of these logical operators (where has precedence over ) to these set operators, thereby giving precedence over .
function Find(x) is if x.parent ≠ x then x.parent := Find(x.parent) return x.parent else return x end if end function This implementation makes two passes, one up the tree and one back down. It requires enough scratch memory to store the path from the query node to the root (in the above pseudocode, the path is implicitly represented using ...
A disjoint union of an indexed family of sets (:) is a set , often denoted by , with an injection of each into , such that the images of these injections form a partition of (that is, each element of belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union.
However, the unit interval [0, 1] and the set of rational numbers Q are not almost disjoint, because their intersection is infinite. This definition extends to any collection of sets. A collection of sets is pairwise almost disjoint or mutually almost disjoint if any two distinct sets in the collection are almost disjoint. Often the prefix ...
In fancier terms, disjoint closed sets are not only separated by neighbourhoods, but also separated by a function. More generally, the Tietze extension theorem: If A is a closed subset of X and f is a continuous function from A to R, then there exists a continuous function F: X → R that extends f in the sense that F(x) = f(x) for all x in A.
That is, for any sets ,, and , one has = () = () Inside a universe , one may define the complement of to be the set of all elements of not in . Furthermore, the intersection of A {\displaystyle A} and B {\displaystyle B} may be written as the complement of the union of their complements, derived easily from De Morgan's laws : A ∩ B = ( A c ...
Applying the axiom of regularity to S, let B be an element of S which is disjoint from S. By the definition of S, B must be f(k) for some natural number k. However, we are given that f(k) contains f(k+1) which is also an element of S. So f(k+1) is in the intersection of f(k) and S. This contradicts the fact that they are disjoint sets.