Search results
Results From The WOW.Com Content Network
If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x) For example, f(x)=e x-1 +2 has horizontal asymptote y=0+2=2, and no vertical or oblique ...
A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.
The basic truncus y = 1 / x 2 has asymptotes at x = 0 and y = 0, and every other truncus can be obtained from this one through a combination of translations and dilations. For the general truncus form above, the constant a dilates the graph by a factor of a from the x -axis; that is, the graph is stretched vertically when a > 1 and compressed ...
An asymptote is a straight line that a curve approaches but never meets or crosses. Informally, one may speak of the curve meeting the asymptote "at infinity" although this is not a precise definition. In the equation =, y becomes arbitrarily small in magnitude as x increases.
Richards's curve has the following form: = + (+) /where = weight, height, size etc., and = time. It has six parameters: : the left horizontal asymptote;: the right horizontal asymptote when =.
Horizontal asymptote about y = 4. There are three basic rules for evaluating limits at infinity for a rational function = () (where p and q are polynomials): If the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Also determine from which side the curve approaches the asymptotes and where the asymptotes intersect the curve. [1] Equate first and second derivatives to 0 to find the stationary points and inflection points respectively. If the equation of the curve cannot be solved explicitly for x or y, finding these derivatives requires implicit ...