Search results
Results From The WOW.Com Content Network
Steps in beta-oxidation of odd-numbered saturated fatty acids [15] For an odd-numbered saturated fat (C n), 0.5 * n - 1.5 oxidations are necessary, and the final process yields 8 acetyl CoA and 1 propionyl CoA. It is then converted to a succinyl CoA by a carboxylation reaction and generates additional 5 ATP (1 ATP is consumed in carboxylation ...
This beta oxidation reaction is repeated until the fatty acid has been completely reduced to acetyl-CoA or, in the case of fatty acids with odd numbers of carbon atoms, acetyl-CoA and 1 molecule of propionyl-CoA per molecule of fatty acid. Each beta oxidative cut of the acyl-CoA molecule eventually yields 5 ATP molecules in oxidative ...
The mitochondrial oxidation of fatty acids takes place in three major steps: β-oxidation occurs to convert fatty acids into 2-carbon acetyl-CoA units. Acetyl-CoA enters into TCA cycle to yield generate reduced NADH and reduced FADH 2. Reduced cofactors NADH and FADH 2 participate in the electron transport chain in the mitochondria to yield ATP ...
[15] Breakdown of fatty acids by beta oxidation. In the cytosol of the cell (for example a muscle cell), the glycerol will be converted to glyceraldehyde 3-phosphate, which is an intermediate in the glycolysis, to get further oxidized and produce energy. However, the main steps of fatty acids catabolism occur in the mitochondria. [16]
Acyl-CoA dehydrogenases (ACADs) are a class of enzymes that function to catalyze the initial step in each cycle of fatty acid β-oxidation in the mitochondria of cells.Their action results in the introduction of a trans double-bond between C2 (α) and C3 (β) of the acyl-CoA thioester substrate. [1]
The carnitine palmitoyltransferase system is an essential step in the beta-oxidation of long chain fatty acids. This transfer system is necessary because, while fatty acids are activated (in the form of a thioester linkage to coenzyme A) on the outer mitochondrial membrane, the activated fatty acids must be oxidized within the mitochondrial matrix
Oxidative phosphorylation (UK / ɒ k ˈ s ɪ d. ə. t ɪ v /, US / ˈ ɑː k. s ɪ ˌ d eɪ. t ɪ v / [1]) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).
In fatty synthesis, the reducing agent is NADPH, whereas NAD is the oxidizing agent in beta-oxidation (the breakdown of fatty acids to acetyl-CoA). This difference exemplifies a general principle that NADPH is consumed during biosynthetic reactions, whereas NADH is generated in energy-yielding reactions. [ 7 ] (