When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical proof - Wikipedia

    en.wikipedia.org/wiki/Statistical_proof

    Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".

  3. Statistics Indonesia - Wikipedia

    en.wikipedia.org/wiki/Statistics_Indonesia

    Statistics Indonesia (Indonesian: Badan Pusat Statistik, BPS, lit. 'Central Agency of Statistics'), is a non-departmental government institute of Indonesia that is responsible for conducting statistical surveys. Its main customer is the government, but statistical data is also available to the public.

  4. Category:Mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/Category:Mathematical_proofs

    This category includes articles on basic topics related to mathematical proofs, including terminology and proof techniques.. Related categories: Pages which contain only proofs (of claims made in other articles) should be placed in the subcategory Category:Article proofs.

  5. Basu's theorem - Wikipedia

    en.wikipedia.org/wiki/Basu's_theorem

    Let X 1, X 2, ..., X n be independent, identically distributed normal random variables with mean μ and variance σ 2.. Then with respect to the parameter μ, one can show that ^ =, the sample mean, is a complete and sufficient statistic – it is all the information one can derive to estimate μ, and no more – and

  6. Surrogate data testing - Wikipedia

    en.wikipedia.org/wiki/Surrogate_data_testing

    Surrogate data testing [1] (or the method of surrogate data) is a statistical proof by contradiction technique similar to permutation tests [2] and parametric bootstrapping.It is used to detect non-linearity in a time series. [3]

  7. Completeness (statistics) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(statistics)

    In statistics, completeness is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. It is opposed to the concept of an ancillary statistic . While an ancillary statistic contains no information about the model parameters, a complete statistic contains only information about the parameters, and ...

  8. Law of truly large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_truly_large_numbers

    The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of independent samples, any highly implausible (i.e. unlikely in any single sample, but with constant probability strictly greater than 0 in any sample) result is likely to be observed. [1]

  9. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    Statistics subsequently branched out into various directions, including decision theory, Bayesian statistics, exploratory data analysis, robust statistics, and non-parametric statistics. Neyman-Pearson hypothesis testing made significant contributions to decision theory, which is widely employed, particularly in statistical quality control.