When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    He understood the importance of the discriminant of the cubic equation to find algebraic solutions to certain types of cubic equations. [18] In his book Flos, Leonardo de Pisa, also known as Fibonacci (1170–1250), was able to closely approximate the positive solution to the cubic equation x 3 + 2x 2 + 10x = 20.

  3. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    Descartes theory of geometric solution of equations uses a parabola to introduce cubic equations, in this way it is possible to set up an equation whose solution is a cube root of two. Note that the parabola itself is not constructible except by three dimensional methods.

  4. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    Cubic equations, which are polynomial equations of the third degree (meaning the highest power of the unknown is 3) can always be solved for their three solutions in terms of cube roots and square roots (although simpler expressions only in terms of square roots exist for all three solutions, if at least one of them is a rational number).

  5. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  6. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.

  7. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis, in which all three real solutions are written in terms of cube roots of complex numbers. On the other hand, consider the ...

  8. Menaechmus - Wikipedia

    en.wikipedia.org/wiki/Menaechmus

    Menaechmus (Greek: Μέναιχμος, c. 380 – c. 320 BC) was an ancient Greek mathematician, geometer and philosopher [1] born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the ...

  9. Hasse principle - Wikipedia

    en.wikipedia.org/wiki/Hasse_principle

    A counterexample by Ernst S. Selmer shows that the Hasse–Minkowski theorem cannot be extended to forms of degree 3: The cubic equation 3x 3 + 4y 3 + 5z 3 = 0 has a solution in real numbers, and in all p-adic fields, but it has no nontrivial solution in which x, y, and z are all rational numbers. [1]