Search results
Results From The WOW.Com Content Network
Radio waves were first predicted by the theory of electromagnetism that was proposed in 1867 by Scottish mathematical physicist James Clerk Maxwell. [5] His mathematical theory, now called Maxwell's equations, predicted that a coupled electric and magnetic field could travel through space as an "electromagnetic wave".
In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking, and satellite communication, among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave ...
Radio waves are defined by the ITU as: "electromagnetic waves of frequencies arbitrarily lower than 3000 GHz, propagated in space without artificial guide". [5] At the high frequency end the radio spectrum is bounded by the infrared band. The boundary between radio waves and infrared waves is defined at different frequencies in different ...
The early history of radio is the history of technology that produces and uses radio instruments that use radio waves. Within the timeline of radio, many people contributed theory and inventions in what became radio. Radio development began as "wireless telegraphy". Later radio history increasingly involves matters of broadcasting.
The radio waves carry the information across space to a receiver, where they are received by an antenna and the information extracted by demodulation in the receiver. Radio waves are also used for navigation in systems like Global Positioning System (GPS) and navigational beacons, and locating distant objects in radiolocation and radar.
Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]
But if the object is a magnetar, it defies description because all known magnetars release energy in a matter of seconds, or a few minutes at the most. ... millisecond-long bursts of radio waves ...
Before the discovery of electromagnetic waves and the development of radio communication, there were many wireless telegraph systems proposed and tested. [4] In April 1872 William Henry Ward received U.S. patent 126,356 for a wireless telegraphy system where he theorized that convection currents in the atmosphere could carry signals like a telegraph wire. [5]