Search results
Results From The WOW.Com Content Network
List of regular expression libraries Name Official website Programming language Software license Used by Boost.Regex [Note 1] Boost C++ Libraries: C++: Boost: Notepad++ >= 6.0.0, EmEditor: Boost.Xpressive Boost C++ Libraries: C++ Boost DEELX RegExLab: C++ Proprietary FREJ [Note 2] Fuzzy Regular Expressions for Java: Java: LGPL GLib/GRegex [Note ...
Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly. In object-oriented languages, string functions are often implemented as properties and methods of string objects.
A regular expression or regex is a sequence of characters that define a pattern to be searched for in a text. Each occurrence of the pattern may then be automatically replaced with another string, which may include parts of the identified pattern.
Regular expressions are used in search engines, in search and replace dialogs of word processors and text editors, in text processing utilities such as sed and AWK, and in lexical analysis. Regular expressions are supported in many programming languages. Library implementations are often called an "engine", [4] [5] and many of these are ...
Sed regular expressions, particularly those using the "s" operator, are much similar to Perl (sed is a predecessor to Perl). The default delimiter is "/", but any delimiter can be used; the default is s / regexp / replacement /, but s: regexp: replacement: is also a valid form. For example, to match a "pub" directory (as in the Perl example ...
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
Besides the built-in RE/flex POSIX regex pattern matcher, RE/flex also supports PCRE2, Boost.Regex and std::regex pattern matching libraries. PCRE2 and Boost.Regex offer a richer regular expression pattern syntax with Perl pattern matching semantics, but are slower due to their intrinsic NFA-based matching algorithm.
A classic example of a problem which a regular grammar cannot handle is the question of whether a given string contains correctly nested parentheses. (This is typically handled by a Chomsky Type 2 grammar, also termed a context-free grammar.)