When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Following Bartoli, Boltzmann considered an ideal heat engine using electromagnetic radiation instead of an ideal gas as working matter. The law was almost immediately experimentally verified. Heinrich Weber in 1888 pointed out deviations at higher temperatures, but perfect accuracy within measurement uncertainties was confirmed up to ...

  3. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    In the study of heat transfer, Schwarzschild's equation [1] [2] [3] is used to calculate radiative transfer (energy transfer via electromagnetic radiation) through a medium in local thermodynamic equilibrium that both absorbs and emits radiation.

  4. Atmospheric radiative transfer codes - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_radiative...

    The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths ...

  5. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Radiation waves may travel in unusual patterns compared to conduction heat flow. Radiation allows waves to travel from a heated body through a cold non-absorbing or partially absorbing medium and reach a warmer body again. [14] An example is the case of the radiation waves that travel from the Sun to the Earth.

  6. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...

  7. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Radiation from the sun, or solar radiation, can be harvested for heat and power. [17] Unlike conductive and convective forms of heat transfer, thermal radiation – arriving within a narrow-angle i.e. coming from a source much smaller than its distance – can be concentrated in a small spot by using reflecting mirrors, which is exploited in ...

  8. Sol-air temperature - Wikipedia

    en.wikipedia.org/wiki/Sol-air_temperature

    Sol-air temperature (T sol-air) is a variable used to calculate cooling load of a building and determine the total heat gain through exterior surfaces. It is an improvement over: = Where: = rate of heat transfer [W] = heat transfer surface area [m 2]

  9. Radiative cooling - Wikipedia

    en.wikipedia.org/wiki/Radiative_cooling

    In winter, the process is reversed so that the roof pond is allowed to absorb solar radiation during the day and release it during the night into the space below. [39] [40] Indirect radiant cooling - A heat transfer fluid removes heat from the building structure through radiate heat transfer with the night sky. A common design for this strategy ...