Search results
Results From The WOW.Com Content Network
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
Since the square root introduces bias, the terminology "uncorrected" and "corrected" is preferred for the standard deviation estimators: s n is the uncorrected sample standard deviation (i.e., without Bessel's correction) s is the corrected sample standard deviation (i.e., with Bessel's correction), which is less biased, but still biased
Unlike in the case of estimating the population mean of a normal distribution, for which the sample mean is a simple estimator with many desirable properties (unbiased, efficient, maximum likelihood), there is no single estimator for the standard deviation with all these properties, and unbiased estimation of standard deviation is a very ...
The unbiased estimation of standard deviation is a technically involved problem, though for the normal distribution using the term n − 1.5 yields an almost unbiased estimator. The unbiased sample variance is a U-statistic for the function ƒ ( y 1 , y 2 ) = ( y 1 − y 2 ) 2 /2, meaning that it is obtained by averaging a 2-sample statistic ...
A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
For a large sample from a normal distribution, 2.22Q n is approximately unbiased for the population standard deviation. For small or moderate samples, the expected value of Q n under a normal distribution depends markedly on the sample size, so finite-sample correction factors (obtained from a table or from simulations) are used to calibrate ...
For a normal distribution with unknown mean and variance, the sample mean and (unbiased) sample variance are the MVUEs for the population mean and population variance. However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation.