Search results
Results From The WOW.Com Content Network
The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum: For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40}
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
A series or, redundantly, an infinite series, is an infinite sum.It is often represented as [8] [15] [16] + + + + + +, where the terms are the members of a sequence of numbers, functions, or anything else that can be added.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
In mathematics, Faulhaber's formula, ... The case = coincides with that of the calculation of the arithmetic series, the sum of the first values of an ...
A summation method that is linear and stable cannot sum the series 1 + 2 + 3 + ⋯ to any finite value. (Stable means that adding a term at the beginning of the series increases the sum by the value of the added term.) This can be seen as follows. If + + + =, then adding 0 to both sides gives
The numbers of the form a + nd form an arithmetic progression, +, +, +, …, and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers (of the form 1 + 2n).