Search results
Results From The WOW.Com Content Network
This clock reaction uses sodium, potassium or ammonium persulfate to oxidize iodide ions to iodine. Sodium thiosulfate is used to reduce iodine back to iodide before the iodine can complex with the starch to form the characteristic blue-black color. Iodine is generated: 2 I − + S 2 O 2− 8 → I 2 + 2 SO 2− 4. And is then removed:
The relevant reaction is akin to the iodine reaction: thiosulfate reduces the hypochlorite (the active ingredient in bleach) and in so doing becomes oxidized to sulfate. The complete reaction is: 4 NaClO + Na 2 S 2 O 3 + 2 NaOH → 4 NaCl + 2 Na 2 SO 4 + H 2 O. Similarly, sodium thiosulfate reacts with bromine, removing the free bromine from ...
Note that iodometry involves indirect titration of iodine liberated by reaction with the analyte, whereas iodimetry involves direct titration using iodine as the titrant. Redox titration using sodium thiosulphate, Na 2 S 2 O 3 (usually) as a reducing agent is known as iodometric titration since it is used specifically to titrate iodine. The ...
For example, the label of a household bleach product may specify "5% sodium hypochlorite by weight." That would mean that 1 kilogram of the product contains 0.05 × 1000 g = 50 g of NaClO. A typical oxidation reaction is the conversion of iodide I − to elemental iodine I 2. The relevant reactions are NaClO + 2 H + + 2 I − → NaCl + H 2 O ...
These salts are often generated by oxidation of thiosulfate. For example, tetrathionate is obtained by oxidation of thiosulfate ion with iodine (reaction is used in iodometry): S 2 O 2− 3 + I 2 → S 4 O 2− 6 + 2 I −. More specialized routes involve reactions of sulfur chlorides with bisulfite salts: SCl 2 + 2 HSO − 3 → [O 3 SSSO 3] 2 ...
Thiosulfate (IUPAC-recommended spelling; sometimes thiosulphate in British English) is an oxyanion of sulfur with the chemical formula S 2 O 2− 3.Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, such as sodium thiosulfate Na 2 S 2 O 3 and ammonium thiosulfate (NH 4) 2 S 2 O 3.
Sodium tetrathionate is formed by the oxidation of sodium thiosulfate (Na 2 S 2 O 3), e.g. by the action of iodine: [1] 2 Na 2 S 2 O 3 + I 2 → Na 2 S 4 O 6 + 2 NaI. The reaction is signaled by the decoloration of iodine. This reaction is the basis of iodometric titrations. Other methods include the coupling of sodium bisulfite with disulfur ...
The basic principle of iodine value was originally introduced in 1884 by A. V. Hübl as “Jodzahl”. He used iodine alcoholic solution in presence of mercuric chloride (HgCl 2) and carbon tetrachloride (CCl 4) as fat solubilizer. The residual iodine is titrated against sodium thiosulfate solution with starch used as endpoint indicator. [4]