Search results
Results From The WOW.Com Content Network
The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...
Deviation of the "true" period of a pendulum from the small-angle approximation of the period. "True" value was obtained numerically evaluating the elliptic integral. Figure 4. Relative errors using the power series for the period. Figure 5. Potential energy and phase portrait of a simple pendulum.
The fundamental rectangle in the complex plane of . There are twelve Jacobi elliptic functions denoted by (,), where and are any of the letters , , , and . (Functions of the form (,) are trivially set to unity for notational completeness.) is the argument, and is the parameter, both of which may be complex.
The period increases asymptotically (to infinity) as θ 0 approaches π radians (180°), because the value θ 0 = π is an unstable equilibrium point for the pendulum. The true period of an ideal simple gravity pendulum can be written in several different forms (see pendulum (mechanics)), one example being the infinite series: [11] [12
The period of a mass attached to a pendulum of length l with gravitational acceleration is given by = This shows that the period of oscillation is independent of the amplitude and mass of the pendulum but not of the acceleration due to gravity, g {\displaystyle g} , therefore a pendulum of the same length on the Moon would swing more slowly due ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
Simple pendulum, see picture (right). Simple harmonic oscillator where the phase portrait is made up of ellipses centred at the origin, which is a fixed point. Damped harmonic motion, see animation (right). Van der Pol oscillator see picture (bottom right).