When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lune (geometry) - Wikipedia

    en.wikipedia.org/wiki/Lune_(geometry)

    In plane geometry, a lune (from Latin luna 'moon') is the concave-convex region bounded by two circular arcs. [1] It has one boundary portion for which the connecting segment of any two nearby points moves outside the region and another boundary portion for which the connecting segment of any two nearby points lies entirely inside the region.

  3. Mrs. Miniver's problem - Wikipedia

    en.wikipedia.org/wiki/Mrs._Miniver's_problem

    Mrs. Miniver's problem is a geometry problem about the area of circles. It asks how to place two circles and of given radii in such a way that the lens formed by intersecting their two interiors has equal area to the symmetric difference of and (the area contained in one but not both circles). [1]

  4. Miquel's theorem - Wikipedia

    en.wikipedia.org/wiki/Miquel's_theorem

    The theorem can be reversed to say: for three circles intersecting at M, a line can be drawn from any point A on one circle, through its intersection C´ with another to give B (at the second intersection). B is then similarly connected, via intersection at A´ of the second and third circles, giving point C.

  5. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    To generate the line that bisects the angle between two given rays [clarification needed] requires a circle of arbitrary radius centered on the intersection point P of the two lines (2). The intersection points of this circle with the two given lines (5) are T1 and T2. Two circles of the same radius, centered on T1 and T2, intersect at points P ...

  6. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    intersection of two polygons: window test. If one wants to determine the intersection points of two polygons, one can check the intersection of any pair of line segments of the polygons (see above). For polygons with many segments this method is rather time-consuming. In practice one accelerates the intersection algorithm by using window tests ...

  7. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    For example, the four circles can be resized so that one given circle is shrunk to a point; alternatively, two given circles can often be resized so that they are tangent to one another. Thirdly, given circles that intersect can be resized so that they become non-intersecting, after which the method for inverting to an annulus can be applied ...

  8. Steiner chain - Wikipedia

    en.wikipedia.org/wiki/Steiner_chain

    If the two given circles are tangent at a point, the Steiner chain becomes an infinite Pappus chain, which is often discussed in the context of the arbelos (shoemaker's knife), a geometric figure made from three circles. There is no general name for a sequence of circles tangent to two given circles that intersect at two points.

  9. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.