Search results
Results From The WOW.Com Content Network
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
magnetic flux density, magnetic induction: tesla: T = Wb/m 2 = N⋅A −1 ⋅m −1: kg⋅s −2 ⋅A −1: Φ, Φ M, Φ B magnetic flux: weber: Wb = V⋅s kg⋅m 2 ⋅s −2 ⋅A −1: H magnetic field strength ampere per metre: A/m A⋅m −1: F magnetomotive force: ampere: A = Wb/H A R magnetic reluctance: inverse henry: H −1 = A/Wb kg − ...
A magnetic field (sometimes called B-field [1]) ... In the International System of Units, the unit of B, magnetic flux density, is the tesla (in SI base units: ...
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .
Magnetic fields are vector quantities characterized by both strength and direction. The strength of a magnetic field is measured in units of tesla in the SI units, and in gauss in the cgs system of units. 10,000 gauss are equal to one tesla. [1] Measurements of the Earth's magnetic field are often quoted in units of nanotesla (nT), also called ...
The unit was established by the IEC in the 1930s [4] in honour of Danish physicist Hans Christian Ørsted.Ørsted discovered the connection between magnetism and electric current when a magnetic field produced by a current-carrying copper bar deflected a magnetised needle during a lecture demonstration.
Measure for the strength of the magnetic field tesla (T = Wb/m 2) M T −2 I −1: pseudovector field Magnetic moment (or magnetic dipole moment) m: The component of magnetic strength and orientation that can be represented by an equivalent magnetic dipole: N⋅m/T L 2 I: vector Magnetization: M: Amount of magnetic moment per unit volume A/m L ...