Search results
Results From The WOW.Com Content Network
The Universal Verification Methodology (UVM) is a standardized methodology for verifying integrated circuit designs. UVM is derived mainly from OVM (Open Verification Methodology) which was, to a large part, based on the eRM (e Reuse Methodology) for the e verification language developed by Verisity Design in 2001.
Verilog-1995 and -2001 limit reg variables to behavioral statements such as RTL code. SystemVerilog extends the reg type so it can be driven by a single driver such as gate or module. SystemVerilog names this type "logic" to remind users that it has this extra capability and is not a hardware register. The names "logic" and "reg" are ...
Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's complement) signed nets and variables. Previously, code authors had to perform signed operations using awkward bit-level manipulations (for example, the carry-out bit of a simple 8-bit addition required an explicit description of the Boolean algebra ...
[2] This is complex and takes the majority of time and effort (up to 70% of design and development time) [1] in most large electronic system design projects. Functional verification is a part of more encompassing design verification , which, besides functional verification, considers non-functional aspects like timing, layout and power.
System Verilog is the first major HDL to offer object orientation and garbage collection. Using the proper subset of hardware description language, a program called a synthesizer, or logic synthesis tool , can infer hardware logic operations from the language statements and produce an equivalent netlist of generic hardware primitives [ jargon ...
Register-transfer-level abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level representations of a circuit, from which lower-level representations and ultimately actual wiring can be derived. Design at the RTL level is typical practice in modern digital design.
A formal equivalence check can be performed between any two representations of a design: RTL <> netlist, netlist <> netlist or RTL <> RTL, though the latter is rare compared to the first two. Typically, a formal equivalence checking tool will also indicate with great precision at which point there exists a difference between two representations.
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of a system with respect to a certain formal specification or property, using formal methods of mathematics. [1] Formal verification is a key incentive for formal specification of systems, and is at the core of formal methods.