When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Slater determinant - Wikipedia

    en.wikipedia.org/wiki/Slater_determinant

    The Slater determinant is named for John C. Slater, who introduced the determinant in 1929 as a means of ensuring the antisymmetry of a many-electron wave function, [2] although the wave function in the determinant form first appeared independently in Heisenberg's [3] and Dirac's [4] [5] articles three years earlier.

  3. Slater's rules - Wikipedia

    en.wikipedia.org/wiki/Slater's_rules

    An example provided in Slater's original paper is for the iron atom which has nuclear charge 26 and electronic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2.The screening constant, and subsequently the shielded (or effective) nuclear charge for each electron is deduced as: [1]

  4. Hartree–Fock method - Wikipedia

    en.wikipedia.org/wiki/Hartree–Fock_method

    A solution to the lack of anti-symmetry in the Hartree method came when it was shown that a Slater determinant, a determinant of one-particle orbitals first used by Heisenberg and Dirac in 1926, trivially satisfies the antisymmetric property of the exact solution and hence is a suitable ansatz for applying the variational principle.

  5. Slater–Condon rules - Wikipedia

    en.wikipedia.org/wiki/Slater–Condon_rules

    In 1929 John C. Slater derived expressions for diagonal matrix elements of an approximate Hamiltonian while investigating atomic spectra within a perturbative approach. [1] The following year Edward Condon extended the rules to non-diagonal matrix elements. [ 2 ]

  6. Slater-type orbital - Wikipedia

    en.wikipedia.org/wiki/Slater-type_orbital

    Slater-type orbitals (STOs) are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method. They are named after the physicist John C. Slater , who introduced them in 1930.

  7. Full configuration interaction - Wikipedia

    en.wikipedia.org/wiki/Full_configuration_interaction

    It is a special case of the configuration interaction method in which all Slater determinants (or configuration state functions, CSFs) of the proper symmetry are included in the variational procedure (i.e., all Slater determinants obtained by exciting all possible electrons to all possible virtual orbitals, orbitals which are unoccupied in the electronic ground state configuration).

  8. Configuration state function - Wikipedia

    en.wikipedia.org/wiki/Configuration_state_function

    In quantum chemistry, a configuration state function (CSF), is a symmetry-adapted linear combination of Slater determinants. A CSF must not be confused with a configuration . In general, one configuration gives rise to several CSFs; all have the same total quantum numbers for spin and spatial parts but differ in their intermediate couplings.

  9. Unrestricted Hartree–Fock - Wikipedia

    en.wikipedia.org/wiki/Unrestricted_Hartree–Fock

    Unrestricted Hartree–Fock (UHF) theory is the most common molecular orbital method for open shell molecules where the number of electrons of each spin are not equal. While restricted Hartree–Fock theory uses a single molecular orbital twice, one multiplied by the α spin function and the other multiplied by the β spin function in the Slater determinant, unrestricted Hartree–Fock theory ...