Search results
Results From The WOW.Com Content Network
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates , the inner ear is mainly responsible for sound detection and balance. [ 1 ] In mammals , it consists of the bony labyrinth , a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [ 2 ]
Sneezing is also triggered by sinus nerve stimulation caused by nasal congestion and allergies. The neural regions involved in the sneeze reflex are located in the brainstem along the ventromedial part of the spinal trigeminal nucleus and the adjacent pontine-medullary lateral reticular formation.
Tonotopy in the auditory system begins at the cochlea, the small snail-like structure in the inner ear that sends information about sound to the brain. Different regions of the basilar membrane in the organ of Corti , the sound-sensitive portion of the cochlea, vibrate at different sinusoidal frequencies due to variations in thickness and width ...
In addition, the vestibular system's function can be affected by tumours on the vestibulocochlear nerve, an infarct in the brain stem or in cortical regions related to the processing of vestibular signals, and cerebellar atrophy. When the vestibular system and the visual system deliver incongruous results, nausea often occurs.
Sound waves enter the ear through the auditory canal. These waves arrive at the eardrum where the properties of the waves are transduced into vibrations. The vibrations travel through the bones of the inner ear to the cochlea. In the cochlea, the vibrations are transduced into electrical information through the firing of hair cells in the organ ...
The cochlear nucleus is the first site of the neuronal processing of the newly converted "digital" data from the inner ear (see also binaural fusion). In mammals, this region is anatomically and physiologically split into two regions, the dorsal cochlear nucleus (DCN), and ventral cochlear nucleus (VCN). The VCN is further divided by the nerve ...
The neural processing of taste is affected at nearly every stage of processing by concurrent somatosensory information from the tongue, that is, mouthfeel. Scent, in contrast, is not combined with taste to create flavor until higher cortical processing regions, such as the insula and orbitofrontal cortex.
This cortex area is the neural crux of hearing, and—in humans—language and music. The auditory cortex is divided into three separate parts: the primary, secondary, and tertiary auditory cortex. These structures are formed concentrically around one another, with the primary cortex in the middle and the tertiary cortex on the outside.