When.com Web Search

  1. Ad

    related to: purple math factor theorem examples pdf problems

Search results

  1. Results From The WOW.Com Content Network
  2. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Rank–nullity theorem (linear algebra) Rao–Blackwell theorem ; Rashevsky–Chow theorem (control theory) Rational root theorem (algebra, polynomials) Rationality theorem ; Ratner's theorems (ergodic theory) Rauch comparison theorem (Riemannian geometry) Rédei's theorem (group theory) Reeb sphere theorem

  3. Factor theorem - Wikipedia

    en.wikipedia.org/wiki/Factor_theorem

    Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent.

  4. Weierstrass factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_factorization...

    It is clear that any finite set {} of points in the complex plane has an associated polynomial = whose zeroes are precisely at the points of that set. The converse is a consequence of the fundamental theorem of algebra: any polynomial function () in the complex plane has a factorization = (), where a is a non-zero constant and {} is the set of zeroes of ().

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property , a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials .

  6. Sophie Germain's identity - Wikipedia

    en.wikipedia.org/wiki/Sophie_Germain's_identity

    In mathematics, Sophie Germain's identity is a polynomial factorization named after Sophie Germain stating that + = ((+) +) (() +) = (+ +) (+). Beyond its use in elementary algebra, it can also be used in number theory to factorize integers of the special form +, and it frequently forms the basis of problems in mathematics competitions.

  7. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  8. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  9. Littlewood's three principles of real analysis - Wikipedia

    en.wikipedia.org/wiki/Littlewood's_three...

    Littlewood's three principles are quoted in several real analysis texts, for example Royden, [2] Bressoud, [3] and Stein & Shakarchi. [4] Royden [5] gives the bounded convergence theorem as an application of the third principle. The theorem states that if a uniformly bounded sequence of functions converges pointwise, then their integrals on a ...