When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .

  3. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    The Darboux integral is defined whenever the Riemann integral is, and always gives the same result. Conversely, the gauge integral is a simple but more powerful generalization of the Riemann integral and has led some educators to advocate that it should replace the Riemann integral in introductory calculus courses. [12]

  4. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    The Riemann–Lebesgue lemma can be used to prove the validity of asymptotic approximations for integrals. Rigorous treatments of the method of steepest descent and the method of stationary phase , amongst others, are based on the Riemann–Lebesgue lemma.

  5. Riemann–Hilbert problem - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hilbert_problem

    In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others. [1]

  6. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .

  7. Riemann–Liouville integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Liouville_integral

    In mathematics, the Riemann–Liouville integral associates with a real function: another function I α f of the same kind for each value of the parameter α > 0.The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, I α f is an iterated antiderivative of f of order α.

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Riemann mapping theorem (complex analysis) Riemann series theorem (mathematical series) Riemann's existence theorem (algebraic geometry) Riemann's theorem on removable singularities (complex analysis) Riemann–Roch theorem (Riemann surfaces, algebraic curves) Riemann–Roch theorem for smooth manifolds (differential topology)

  9. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...