Search results
Results From The WOW.Com Content Network
The position of this so-called winner prototype is then adapted, i.e. the winner is moved closer if it correctly classifies the data point or moved away if it classifies the data point incorrectly. An advantage of LVQ is that it creates prototypes that are easy to interpret for experts in the respective application domain. [ 2 ]
Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. Developed in the early 1980s by Robert M. Gray , it was originally used for data compression .
This matching may be assessed in the lung as a whole, or in individual or in sub-groups of gas-exchanging units in the lung. On the other side Ventilation-perfusion mismatch is the term used when the ventilation and the perfusion of a gas exchanging unit are not matched. The actual values in the lung vary depending on the position within the lung.
Matching pursuit should represent the signal by just a few atoms, such as the three at the centers of the clearly visible ellipses. Matching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary .
In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. [1] It is part of the families of probabilistic graphical models and variational Bayesian methods.
Point set registration is the process of aligning two point sets. Here, the blue fish is being registered to the red fish. In computer vision, pattern recognition, and robotics, point-set registration, also known as point-cloud registration or scan matching, is the process of finding a spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds.
In this context, aligning ontologies is sometimes referred to as "ontology matching". The problem of Ontology Alignment has been tackled recently by trying to compute matching first and mapping (based on the matching) in an automatic fashion. Systems like DSSim, X-SOM [6] or COMA++ obtained at the moment very high precision and recall. [3]
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.