Search results
Results From The WOW.Com Content Network
Plants synthesize carbohydrates from carbon dioxide and water through photosynthesis, allowing them to store energy absorbed from sunlight internally. [2] When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. [2]
Metabolic water refers to water created inside a living organism through metabolism, by oxidizing energy-containing substances in food and adipose tissue. Animal metabolism produces about 107–110 grams of water per 100 grams of fat , [ 1 ] 41–42 grams of water per 100 g of protein , and 60 grams of water per 100 g of carbohydrate .
Food energy is chemical energy that animals (including humans) derive from their food to sustain their metabolism, including their muscular activity. [1]Most animals derive most of their energy from aerobic respiration, namely combining the carbohydrates, fats, and proteins with oxygen from air or dissolved in water. [2]
The seven major classes of nutrients are carbohydrates, fats, fiber, minerals, proteins, vitamins, and water. [7] Nutrients can be grouped as either macronutrients or micronutrients (needed in small quantities). Carbohydrates, fats, and proteins are macronutrients, and provide energy. [7] Water and fiber are macronutrients, but do not provide ...
Glucose reacts with oxygen in the following reaction, C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O. Carbon dioxide and water are waste products, and the overall reaction is exothermic. The reaction of glucose with oxygen releasing energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms.
Although the four elements: carbon, hydrogen, oxygen, and nitrogen are essential for life, they are so plentiful in food and drink that these are not considered nutrients and there are no recommended intakes for these as minerals. The need for nitrogen is addressed by requirements set for protein, which is composed of nitrogen-containing amino ...
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle.
1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4. Pyruvate reenters the mesophyll cell, where it is reused to produce malate or aspartate.