Search results
Results From The WOW.Com Content Network
The potential magnetic energy of a magnet or magnetic moment in a magnetic field is defined as the mechanical work of the magnetic force on the re-alignment of the vector of the magnetic dipole moment and is equal to: = The mechanical work takes the form of a torque : = = which will act to "realign" the magnetic dipole with the magnetic field.
In magnetics, the maximum energy product is an important figure-of-merit for the strength of a permanent magnet material. It is often denoted ( BH ) max and is typically given in units of either kJ/m 3 (kilojoules per cubic meter, in SI electromagnetism) or MGOe (mega- gauss - oersted , in gaussian electromagnetism ).
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. [1] It is represented by a pseudovector M.
In physics, multiple types of material magnetism have been distinguished. Ferromagnetism (along with the similar effect ferrimagnetism) is the strongest type and is responsible for the common phenomenon of everyday magnetism. [1] An example of a permanent magnet formed from a ferromagnetic material is a refrigerator magnet. [2]
(A non-circuit example would be a magnet with a straight cylindrical core.) To determine the force between two electromagnets (or permanent magnets) in these cases, a special analogy called a magnetic-charge model can be used. In this model, it is assumed that the magnets have well-defined "poles" where the field lines emerge from the core, and ...
The magnetic field generated by the EPM is produced by the permanent magnets not by electric currents and this is the main difference with the electromagnets. An EPM uses only a pulse of current to magnetize one of the magnet in a desired direction (turning on and off the external magnetic field of the latch).
This is a specific example of a general rule that magnets are attracted (or repulsed depending on the orientation of the magnet) into regions of higher magnetic field. Any non-uniform magnetic field, whether caused by permanent magnets or electric currents, exerts a force on a small magnet in this way.