Search results
Results From The WOW.Com Content Network
The treatise is not a compendium of all that the Hellenistic mathematicians knew at the time about geometry; Euclid himself wrote eight more advanced books on geometry. We know from other references that Euclid's was not the first elementary geometry textbook, but it was so much superior that the others fell into disuse and were lost.
1870 – Felix Klein constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate, 1873 – Charles Hermite proves that e is transcendental, 1878 – Charles Hermite solves the general quintic equation by means of elliptic and modular functions
Plato (428/427 BC – 348/347 BC) is important in the history of mathematics for inspiring and guiding others. [50] His Platonic Academy, in Athens, became the mathematical center of the world in the 4th century BC, and it was from this school that the leading mathematicians of the day, such as Eudoxus of Cnidus (c. 390 - c. 340 BC), came. [51]
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
An overview of the history of mathematics, in seven chapters including the development of important concepts such as number, geometry, mathematical proof, and the axiomatic approach to the foundations of mathematics. [3] [4] [5] [7] A chronology of significant events in mathematical history is also provided later in the book. [5]
A quick glance into the world of modern triangle geometry as it existed during the peak of interest in triangle geometry subsequent to the publication of Lemoine's paper is presented below. This presentation is largely based on the topics discussed in William Gallatly's book [ 13 ] published in 1910 and Roger A Johnsons' book [ 14 ] first ...
Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint.
This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements. [ 21 ] [ 22 ] The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane ( plane geometry ) and the three ...