Search results
Results From The WOW.Com Content Network
Sir Andrew John Wiles. Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Sir Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to ...
The strategy that ultimately led to a successful proof of Fermat's Last Theorem arose from the "astounding" [137]: 211 Taniyama–Shimura–Weil conjecture, proposed around 1955—which many mathematicians believed would be near to impossible to prove, [137]: 223 and was linked in the 1980s by Gerhard Frey, Jean-Pierre Serre and Ken Ribet to ...
Fermat's Last Tango is a 2000 off-Broadway musical about the proof of Fermat's Last Theorem, written by husband and wife Joshua Rosenblum (music, lyrics) and Joanne Sydney Lessner (book, lyrics). The musical presents a fictionalized version of the real life story of Andrew Wiles , and has been praised for the accuracy of the mathematical content.
Discusses various material which is related to the proof of Fermat's Last Theorem: elliptic curves, modular forms, Galois representations and their deformations, Frey's construction, and the conjectures of Serre and of Taniyama–Shimura. Shay, David (2003). "Fermat's Last Theorem". Archived from the original on 2012-02-27
Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory.He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal and for which he was appointed a Knight Commander of the Order of the British Empire in 2000. [1]
The latter formulation has been used in the proof of the conjecture. Dealing with the level of the forms (and the connection to the conductor of the curve) is particularly delicate. The most spectacular application of the conjecture is the proof of Fermat's Last Theorem (FLT). Suppose that for a prime p ≥ 5, the Fermat equation
The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...
Some of the proofs of Fermat's little theorem given below depend on two simplifications. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1 . This is a simple consequence of the laws of modular arithmetic ; we are simply saying that we may first reduce a modulo p .