Search results
Results From The WOW.Com Content Network
Glutathione peroxidase (GPx) (EC 1.11.1.9) is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. [2] The biochemical function of glutathione peroxidase is to reduce lipid hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to ...
The relative importance of the antioxidant and pro-oxidant activities of antioxidants is an area of current research, but vitamin C, which exerts its effects as a vitamin by oxidizing polypeptides, appears to have a mostly antioxidant action in the human body. [95]
The antioxidant enzyme glutathione peroxidase 4 (GPX4) belongs to the family of glutathione peroxidases, which consists of 8 known mammalian isoenzymes (GPX1–8).GPX4 catalyzes the reduction of hydrogen peroxide, organic hydroperoxides, and lipid peroxides at the expense of reduced glutathione and functions in the protection of cells against oxidative stress.
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle.All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate.
Oxidative phosphorylation in the eukaryotic mitochondrion is the best-understood example of this process. The mitochondrion is present in almost all eukaryotes, with the exception of anaerobic protozoa such as Trichomonas vaginalis that instead reduce protons to hydrogen in a remnant mitochondrion called a hydrogenosome .
Antioxidants play a crucial role in mitigating lipid peroxidation by neutralizing free radicals, thereby halting radical chain reactions. Key antioxidants include vitamin C and vitamin E . [ 8 ] Additionally, enzymes including superoxide dismutase , catalase , and peroxidase contribute to the oxidation response by reducing the presence of ...
Selenocysteine is present in several enzymes (for example glutathione peroxidases, tetraiodothyronine 5′ deiodinases, thioredoxin reductases, formate dehydrogenases, glycine reductases, selenophosphate synthetase 2, methionine-R-sulfoxide reductase B1 , and some hydrogenases).
Small changes in cellular oxidant status can be sensed by specific proteins which regulate a set of genes encoding antioxidant enzymes. Such a global response induces an adaptive metabolism including ROS elimination, the bypass of injured pathways, reparation of oxidative damages and maintenance of reducing power.