Search results
Results From The WOW.Com Content Network
The graph of the absolute value function for real numbers The absolute value of a number may be thought of as its distance from zero.. In mathematics, the absolute value or modulus of a real number, denoted | |, is the non-negative value of without regard to its sign.
A modular graph derived from a modular lattice. In graph theory, a branch of mathematics, the modular graphs are undirected graphs in which every three vertices x, y, and z have at least one median vertex m(x, y, z) that belongs to shortest paths between each pair of x, y, and z. [1]
The Euclidean norm of a complex number is the absolute value (also called the modulus) of it, if the complex plane is identified with the Euclidean plane. This identification of the complex number x + i y {\displaystyle x+iy} as a vector in the Euclidean plane, makes the quantity x 2 + y 2 {\textstyle {\sqrt {x^{2}+y^{2}}}} (as first suggested ...
The distance along the line from the origin to the point z = x + yi is the modulus or absolute value of z. The angle θ is the argument of z. Argand diagram refers to a geometric plot of complex numbers as points z = x + iy using the horizontal x-axis as the real axis and the vertical y-axis as the imaginary axis. [3]
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
In fact, x ≡ b m n −1 m + a n m −1 n (mod mn) where m n −1 is the inverse of m modulo n and n m −1 is the inverse of n modulo m. Lagrange's theorem: If p is prime and f (x) = a 0 x d + ... + a d is a polynomial with integer coefficients such that p is not a divisor of a 0, then the congruence f (x) ≡ 0 (mod p) has at most d non ...
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.