Search results
Results From The WOW.Com Content Network
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...
[1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [note 1] The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies ...
Settling velocity W s of a sand grain (diameter d, density 2650 kg/m 3) in water at 20 °C, computed with the formula of Soulsby (1997). When the buoyancy effects are taken into account, an object falling through a fluid under its own weight can reach a terminal velocity (settling velocity) if the net force acting on the object becomes zero.
Phase and group velocity divided by √ gh as a function of h / λ . A: phase velocity, B: group velocity, C: phase and group velocity √ gh valid in shallow water. Drawn lines: based on dispersion relation valid in arbitrary depth. Dashed lines: based on dispersion relation valid in deep water.
In practice a rough un-streamlined body (a bluff body) will have a around 1, more or less. Smoother objects can have much lower values of c d {\displaystyle c_{\rm {d}}} . The equation is precise – it simply provides the definition of c d {\displaystyle c_{\rm {d}}} ( drag coefficient ), which varies with the Reynolds number and is found by ...
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics .
where D / Dt is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).