When.com Web Search

  1. Ads

    related to: solving using substitution practice

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or Runge–Kutta methods.A further division can be realized by dividing methods into those that are explicit and those that are implicit.

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  4. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Substitution, written M[x := N], is the process of replacing all free occurrences of the variable x in the expression M with expression N. Substitution on terms of the lambda calculus is defined by recursion on the structure of terms, as follows (note: x and y are only variables while M and N are any lambda expression): x[x := N] = N

  5. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

  6. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.

  7. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    or equivalently, = ()because of the substitution rule for integrals.. If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated.

  1. Ad

    related to: solving using substitution practice