Search results
Results From The WOW.Com Content Network
Epithelial cells also exhibit planar cell polarity, in which specialized structures are orientated within the plane of the epithelial sheet. Some examples of planar cell polarity include the scales of fish being oriented in the same direction and similarly the feathers of birds, the fur of mammals, and the cuticular projections (sensory hairs ...
Polarization is crucial in a variety of cells, but especially important in neurons. [ 8 ] In neurons of the central nervous system and peripheral nervous system , polarized membranes allow for the propagation and transduction of action potentials .
Epithelial polarity is one example of the cell polarity that is a fundamental feature of many types of cells. Epithelial cells feature distinct 'apical', 'lateral' and 'basal' plasma membrane domains. Epithelial cells connect to one another via their lateral membranes to form epithelial sheets that line cavities and surfaces throughout the ...
Hyperpolarization is a change in a cell's membrane potential that makes it more negative. Cells typically have a negative resting potential, with neuronal action potentials depolarizing the membrane. When the resting membrane potential is made more negative, it increases the minimum stimulus needed to surpass the needed threshold.
All cells in animal body tissues are electrically polarized – in other words, they maintain a voltage difference across the cell's plasma membrane, known as the membrane potential. This electrical polarization results from a complex interplay between protein structures embedded in the membrane called ion pumps and ion channels.
Endothelial cells accomplish these feats by using depolarization to alter their structural strength. When an endothelial cell undergoes depolarization, the result is a marked decrease in the rigidity and structural strength of the cell by altering the network of fibers that provide these cells with their structural support.
Afterhyperpolarization, or AHP, is the hyperpolarizing phase of a neuron's action potential where the cell's membrane potential falls below the normal resting potential. This is also commonly referred to as an action potential's undershoot phase. AHPs have been segregated into "fast", "medium", and "slow" components that appear to have distinct ...
Macrophage polarization is a process by which macrophages adopt different functional programs in response to the signals from their microenvironment. This ability is connected to their multiple roles in the organism: they are powerful effector cells of the innate immune system, but also important in removal of cellular debris, embryonic development and tissue repair.