Search results
Results From The WOW.Com Content Network
In tiling or tessellation problems, there are to be no gaps, nor overlaps. Many of the puzzles of this type involve packing rectangles or polyominoes into a larger rectangle or other square-like shape. There are significant theorems on tiling rectangles (and cuboids) in rectangles (cuboids) with no gaps or overlaps:
Tessellation in two dimensions, also called planar tiling, is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules. These rules can be varied.
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
We’ve gathered some amusing and oddly satisfying examples of things that perfectly fit into other things. If that sounds like After all, so many folks want buttons and knobs returned to cars and ...
Tetrahedral packaging. Aristotle claimed that tetrahedra could fill space completely. [4] [5]In 2006, Conway and Torquato showed that a packing fraction about 72% can be obtained by constructing a non-Bravais lattice packing of tetrahedra (with multiple particles with generally different orientations per repeating unit), and thus they showed that the best tetrahedron packing cannot be a ...
Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials.
The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.
When putting together your CV, try not to worry too much about any gaps. Instead, think about all the reasons you are suitable for the role in questions and communicate these as best you can.