Search results
Results From The WOW.Com Content Network
In classical mechanics, areal velocity (also called sector velocity or sectorial velocity) is a pseudovector whose length equals the rate of change at which area is swept out by a particle as it moves along a curve. It has SI units of square meters per second (m 2 /s) and dimension of square length per time L 2 T −1.
Since the speed v is likewise unchanging, the areal velocity 1 ⁄ 2 vr ⊥ is a constant of motion; the particle sweeps out equal areas in equal times. The area A of a circular sector equals 1 ⁄ 2 r 2 φ = 1 ⁄ 2 r 2 ωt = 1 ⁄ 2 r v φ t. Hence, the areal velocity dA/dt equals 1 ⁄ 2 r v φ = 1 ⁄ 2 h.
This constant areal velocity can be calculated as follows. At the apapsis and periapsis, the positions of closest and furthest distance from the attracting center, the velocity and radius vectors are perpendicular; therefore, the angular momentum L 1 per mass m of the particle (written as h 1) can be related to the rate of sweeping out areas
In this case, the terminal velocity increases to about 320 km/h (200 mph or 90 m/s), [citation needed] which is almost the terminal velocity of the peregrine falcon diving down on its prey. [4] The same terminal velocity is reached for a typical .30-06 bullet dropping downwards—when it is returning to earth having been fired upwards, or ...
As it does so, the object's motion will be described by two vectors: a translation vector, and a rotation vector ω, which is an areal velocity vector: the Darboux vector. Note that this rotation is kinematic , rather than physical, because usually when a rigid object moves freely in space its rotation is independent of its translation.
In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
It can also be seen that the Maxwell–Boltzmann velocity distribution for the vector velocity [v x, v y, v z] is the product of the distributions for each of the three directions: (,,) = () where the distribution for a single direction is = ().