When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    The formula resulting from transforming all clauses is at most 3 times as long as its original; that is, the length growth is polynomial. [10] 3-SAT is one of Karp's 21 NP-complete problems, and it is used as a starting point for proving that other problems are also NP-hard. [b] This is done by polynomial-time reduction from 3-SAT to the other ...

  3. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FP NP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. The bottleneck travelling salesman problem is also NP-hard.

  4. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    Therefore, the longest path problem is NP-hard. The question "does there exist a simple path in a given graph with at least k edges" is NP-complete. [2] In weighted complete graphs with non-negative edge weights, the weighted longest path problem is the same as the Travelling salesman path problem, because the longest path always includes all ...

  5. Weak NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Weak_NP-completeness

    In computational complexity, an NP-complete (or NP-hard) problem is weakly NP-complete (or weakly NP-hard) if there is an algorithm for the problem whose running time is polynomial in the dimension of the problem and the magnitudes of the data involved (provided these are given as integers), rather than the base-two logarithms of their magnitudes.

  6. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  7. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP-hard (unless ...

  8. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do. The set of NP-complete problems is often denoted by NP-C or NPC.

  9. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems (excluding the empty language and its complement, which belong to P but are not NP-complete) Main article: P versus NP problem The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time ), an algorithm ...