Search results
Results From The WOW.Com Content Network
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
This is known as Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree.
For example, the teardrop orbifold has Euler characteristic 1 + 1 / p , where p is a prime number corresponding to the cone angle 2 π / p . The concept of Euler characteristic of the reduced homology of a bounded finite poset is another generalization, important in combinatorics. A poset is "bounded" if it has smallest and ...
For example, connectedness of zones might be enforced, or concurrency of curves or multiple points might be banned, as might tangential intersection of curves. In the adjacent diagram, examples of small Venn diagrams are transformed into Euler diagrams by sequences of transformations; some of the intermediate diagrams have concurrency of curves.
Euler's recognition that the key information was the number of bridges and the list of their endpoints (rather than their exact positions) presaged the development of topology. The difference between the actual layout and the graph schematic is a good example of the idea that topology is not concerned with the rigid shape of objects.
For example, the diagram below shows n = 20 and the partition 20 = 7 + 6 + 4 + 3. Let m be the number of elements in the smallest row of the diagram (m = 3 in the above example). Let s be the number of elements in the rightmost 45 degree line of the diagram (s = 2 dots in red above, since 7 − 1 = 6, but 6 − 1 > 4).
Euler's theorem, on modular exponentiation; Euler's partition theorem relating the product and series representations of the Euler function Π(1 − x n) Goldbach–Euler theorem, stating that sum of 1/(k − 1), where k ranges over positive integers of the form m n for m ≥ 2 and n ≥ 2, equals 1; Gram–Euler theorem
The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.