Search results
Results From The WOW.Com Content Network
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
For example, the teardrop orbifold has Euler characteristic 1 + 1 / p , where p is a prime number corresponding to the cone angle 2 π / p . The concept of Euler characteristic of the reduced homology of a bounded finite poset is another generalization, important in combinatorics. A poset is "bounded" if it has smallest and ...
Euler proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to the Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n.
Euler's theorem, on modular exponentiation; Euler's partition theorem relating the product and series representations of the Euler function Π(1 − x n) Goldbach–Euler theorem, stating that sum of 1/(k − 1), where k ranges over positive integers of the form m n for m ≥ 2 and n ≥ 2, equals 1; Gram–Euler theorem
A norm over a real vector space is an example of a positively homogeneous function that is not homogeneous. A special case is the absolute value of real numbers. The quotient of two homogeneous polynomials of the same degree gives an example of a homogeneous function of degree zero. This example is fundamental in the definition of projective ...
In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem. It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many k th powers of positive integers is itself a k th power, then n is greater than or equal to k :
JSJ theorem (3-manifolds) Lickorish twist theorem (geometric topology) Lickorish–Wallace theorem (3-manifolds) Nielsen realization problem (geometric topology) Nielsen-Thurston classification (low-dimensional topology) Novikov's compact leaf theorem ; Perelman's Geometrization theorem (3-manifolds) Poincaré–Hopf theorem (differential topology)
[2] [3] Cramer and Leonhard Euler corresponded on the paradox in letters of 1744 and 1745 and Euler explained the problem to Cramer. [4] It has become known as Cramer's paradox after featuring in his 1750 book Introduction à l'analyse des lignes courbes algébriques, although Cramer quoted Maclaurin as the source of the statement. [5]