Ads
related to: surface tension database formula worksheet freegenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
During this process, surface tension decrease as function of time and finally approach the equilibrium surface tension (σ equilibrium). [3] Such a process is illustrated in figure 1. (Image was reproduced from reference) [2] Figure 1: Migration of surfactant molecules and change of surface tension (σ t1 > σ t2 > σ equilibrium).
The surface tension is a linear function of the temperature. This assumption is approximately fulfilled for most known liquids. When plotting the surface tension versus the temperature a fairly straight line can be seen which has a surface tension of zero at the critical temperature.
A small contact angle indicates good wettability, while a large contact angle indicates poor wettability. The critical surface tension is the highest liquid surface tension that can completely wet a specific solid surface. For adhesive bonding complete wetting is used to maximize the adhesive joint strength.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
An object or an insect can float on water due to surface tension if Bo < 1. Its inverse = =, is known as the Jesus number. [7] [10] [11] [12] Conversely, an insect can float over water if Je >1. This principle allows for animal locomotion on the surface of water.
γ is surface tension of the mixture; γ 0 is surface tension of pure water; R is ideal gas constant 8.31 J/(mol*K) T is temperature in K; ω is cross-sectional area of the surfactant molecules at the surface; The surface tension of pure water is dependent on temperature. At room temperature (298 K), it is equal to 71.97 mN/m [4]
A classical torsion wire-based du Noüy ring tensiometer. The arrow on the left points to the ring itself. The most common correction factors include Zuidema–Waters correction factors (for liquids with low interfacial tension), Huh–Mason correction factors (which cover a wider range than Zuidema–Waters), and Harkins–Jordan correction factors (more precise than Huh–Mason, while still ...