Search results
Results From The WOW.Com Content Network
The area of a rectangle is equal to the product of two adjacent sides. The area of a square is equal to the product of two of its sides (follows from 3). Next, each top square is related to a triangle congruent with another triangle related in turn to one of two rectangles making up the lower square. [10]
That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a ...
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
The only equable rectangles with integer sides are the 4 × 4 square and the 3 × 6 rectangle. [4] An integer rectangle is a special type of polyomino, and more generally there exist polyominoes with equal area and perimeter for any even integer area greater than or equal to 16. For smaller areas, the perimeter of a polyomino must exceed its area.
The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is = (+) and the area of a single triangle is
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four straight sides of equal length and four equal angles (90-degree angles, π /2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adjacent sides.
where θ is half the sum of any two opposite angles. (The choice of which pair of opposite angles is irrelevant: if the other two angles are taken, half their sum is 180° − θ. Since cos(180° − θ) = −cos θ, we have cos 2 (180° − θ) = cos 2 θ.) This more general formula is known as Bretschneider's formula.
The two equal sides are called the legs and the third side is called the base of the triangle. The other dimensions of the triangle, such as its height, area, and perimeter, can be calculated by simple formulas from the lengths of the legs and base. Every isosceles triangle has an axis of symmetry along the perpendicular bisector of its base.