Search results
Results From The WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other. Identically distributed : Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll.
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
(That is, the two dice are independent.) If, however, the 1st die's result is a 3, and someone tells you about a third event - that the sum of the two results is even - then this extra unit of information restricts the options for the 2nd result to an odd number. In other words, two events can be independent, but NOT conditionally independent. [2]
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.
Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.
This follows from the definition of independence in probability: the probabilities of two independent events happening, given a model, is the product of the probabilities. This is particularly important when the events are from independent and identically distributed random variables, such as independent observations or sampling with ...