Search results
Results From The WOW.Com Content Network
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
This is a list of unusually long mathematical proofs.Such proofs often use computational proof methods and may be considered non-surveyable.. As of 2011, the longest mathematical proof, measured by number of published journal pages, is the classification of finite simple groups with well over 10000 pages.
An elementary proof is a proof which only uses basic techniques. More specifically, the term is used in number theory to refer to proofs that make no use of complex analysis . For some time it was thought that certain theorems, like the prime number theorem , could only be proved using "higher" mathematics.
This is a list of notable theorems. Lists of theorems and similar statements include: List of algebras; ... List of mathematical proofs; List of misnamed theorems;
Pages which contain only proofs (of claims made in other articles) should be placed in the subcategory Category:Article proofs. Pages which contain theorems and their proofs should be placed in the subcategory Category:Articles containing proofs. Articles related to automatic theorem proving should be placed in Category:Automated theorem proving.
Several probabilistic proofs of Stirling's formula (and related results) were found in the 20th century. [4] [5] The only bounded harmonic functions defined on the whole plane are constant functions by Liouville's theorem. A probabilistic proof via n-dimensional Brownian motion is well known. [6] Non-probabilistic proofs were available earlier.
The proof was completed by Werner Ballmann about 50 years later. Littlewood–Richardson rule. Robinson published an incomplete proof in 1938, though the gaps were not noticed for many years. The first complete proofs were given by Marcel-Paul Schützenberger in 1977 and Thomas in 1974. Class numbers of imaginary quadratic fields.
The following list is meant to serve as a repository for compiling a list of such ideas. The idea of the Pythagoreans that all numbers can be expressed as a ratio of two whole numbers . This was disproved by one of Pythagoras ' own disciples, Hippasus , who showed that the square root of two is what we today call an irrational number .