Search results
Results From The WOW.Com Content Network
Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. [1] This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.
Autocrine signaling occurs when the chemical signal acts on the same cell that produced the signaling chemical. [1] Intracrine signaling occurs when the chemical signal produced by a cell acts on receptors located in the cytoplasm or nucleus of the same cell. [2] Juxtacrine signaling occurs between physically adjacent cells. [3]
A chemical message is any compound that serves to transmit a message, and may refer to: Hormone, long range chemical messenger; Neurotransmitter, communicates to adjacent cells; Neuropeptide, a protein sequence which acts as a hormone or neurotransmitter. The blood or other body fluids transport neuropeptides to non adjacent target cells, where ...
Cytokines (/ ˈ s aɪ t ə k aɪ n /) [1] are a broad and loose category of small proteins (~5–25 kDa [2]) important in cell signaling. Due to their size, cytokines cannot cross the lipid bilayer of cells to enter the cytoplasm and therefore typically exert their functions by interacting with specific cytokine receptors on the target cell ...
The thyroid secretes thyroxine, the pituitary secretes growth hormone, the pineal secretes melatonin, the testis secretes testosterone, and the ovaries secrete estrogen and progesterone. [ 2 ] Glands that signal each other in sequence are often referred to as an axis, such as the hypothalamic–pituitary–adrenal axis .
The definition and use of the term myokine first occurred in 2003. [5] In 2008, the first myokine, myostatin, was identified. [4] [6] The gp130 receptor cytokine IL-6 (Interleukin 6) was the first myokine found to be secreted into the blood stream in response to muscle contractions.
The two main chemical messengers of the sympathoadrenal system are norepinephrine and epinephrine (also called noradrenaline and adrenaline respectively). These chemicals are created by the adrenal glands after receiving neuronal signals from the sympathetic nervous system. The different physiological effects of these chemicals depend on the ...
Experimental response: Application of the chemical directly to the target cells should produce the same response observed when the chemical is naturally released from neurons. Removal mechanism: There must be a mechanism in place to remove the neurotransmitter from its site of action once its signaling role is complete.